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A scaling theory of replica symmetry breaking �RSB� in the Sherrington-Kirkpatrick �SK� model is pre-
sented in the framework of critical phenomena for the scaling regime of large RSB orders �, small tempera-
tures T, and small �homogeneous� magnetic fields H. We employ the pseudodynamical picture �R. Oppermann,
M. J. Schmidt, and D. Sherrington, Phys. Rev. Lett. 98, 127201 �2007��, where two critical points CP1 and
CP2 are associated with the order function’s pseudodynamical limits lima→� q�a�=1 and lima→0 q�a�=0 at
�T=0, H=0, 1 /�=0�. CP1- and CP2-dominated contributions to the free energy functional F�q�a�� require an
unconventional scaling hypothesis. We determine the scaling contributions in accordance with detailed numeri-
cal self-consistent solutions for up to 200 orders of RSB. Power laws, scaling functions, and crossover lines are
obtained. CP1-dominated behavior is found for the nonequilibrium susceptibility, which decays like �1

=�−5/3f1�T /�−5/3�, for the entropy, which obeys S�T=0���1
2, and for the subclass of diverging parameters

ai=�5/3fai
�T /�−5/3� �describing Parisi box sizes mi�T��ai�T�T�, with f1����� and fai

����1 /� for �→�,
while f�0� is finite. CP2-dominated behavior, controlled by the magnetic field H while temperature is irrel-
evant, is retrieved in the plateau height �or width� of the order function q�a� according to qpl�H�
=�−1fpl�H2/3 /�−1� with fpl������→��� and fpl�0� finite. Divergent characteristic RSB orders �CP1�T��T−3/5

and �CP2�H��H−2/3, respectively, describe the crossover from mean field SK- to RSB-critical behavior with
rational-valued exponents extracted with high precision from our RSB data. The order function q�a� is obtained
as a fixed-point function q*�a*� of RSB flow, in agreement with integrated fixed-point energy and suscepti-
bility distributions.
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I. INTRODUCTION

The far-reaching usefulness of spin-glass theories �1–3�
and of its key structural elements such as frustration, disor-
der, hierarchical order, ultrametricity, complexity, and freez-
ing transition, is evidenced by applications entering even life
sciences and transdisciplinary research fields. Physical mod-
els, where these key structures acquired a specific math-
ematical meaning, find very broad applications beyond their
origin in frustrated magnetism. Let us mention, apart from
fields like neural networks, computer science, and econo-
physics, the fascinating sociological applications to opinion
and group dynamics �4,5�, biological applications to RNA
folding �6–8� including the quantum chromodynamical anal-
ogy and random matrix theory �9�. For these reasons it seems
natural to search for universal features of unifying models
both in the general sense and in the precise meaning of the
renormalization group �7�.

The 3SAT optimization problem �10,11� and its close re-
lation to the T=0 Sherrington-Kirkpatrick model �12� or
RNA folding in biophysics �6�, where glass transitions exist
within the secondary RNA structure �7,13,14�, provide ex-
amples where even the zero temperature limit is either ex-
actly realized or close to the realistic situation. In physics,
spin-glass phases are usually confined to a low-temperature
regime and some applications are rather remote from it. Yet
knowing the ground-state structure remains important. For
one of the most fruitful standard models, the Sherrington-
Kirkpatrick model �12� �SK model�, the hierarchical ground-
state structure, as predicted by Parisi three decades ago
�15,16�, has been confirmed �17�. Yet further explicit analytic

solutions and meaningful approximations are still required to
improve understanding and to support progress in more com-
plicated �non-mean-field finite-range, or quantum� models.

The attempt to link the SK-model behavior deep inside its
ordered �spin-glass� phase to the theory of critical phenom-
ena may appear unmotivated at first sight, since the infinite-
ranged spin interaction suggests “only” mean-field behavior.
However the SK-model solution is not simple below its ther-
mal mean-field transition. The source of complication is
known to be the Parisi replica symmetry breaking �RSB�.
RSB involves a treelike hierarchical structure of the order
parameter �3�. The tree height is cut off �18� in case of a
finite RSB order �. As � grows to infinity, a characteristic
RSB order �c�T� or tree height can be identified �see, for
example, Eqs. �15� and �21� in Sec. IV below�, which scales
with temperature like T−3/5 and hence diverges as T→0. At
high tree levels, hence near the diagonal of the Parisi matrix
�3,18�, nonlinear effects turn out to be responsible for
nonanalytic behavior as a function of the quasicontinuous
variable 1 /�. The nonanalytic power laws specify an RSB-
universality class, which should be compared with similar
behavior in different physical systems and in other scientific
fields such as biology, sociology, and �mathematical� psy-
chology, where evidently frustrated random �and in some
cases range-free� interactions are important.

Nonanalytic power laws �with rational exponents� for the
SK model have been discussed in many different respects,
as, for example, for the finite-size cutoff �or finite spin num-
ber� dependence �19–21�. One may also mention the expo-
nent of the de Almeida–Thouless line �18�. However, a link
to specific critical points has not been made.
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In the present paper, we report progress in understanding
replica symmetry breaking in the Sherrington-Kirkpatrick
model �12� as a critical phenomenon; this refers to scaling
behavior on one hand and to �numerically determined� fixed-
point functions under RSB-order flow �→� on the other.
Nonanalytic scaling behavior is described as a function of
the inverse RSB order decreasing to zero either together with
temperature T→0, or together with the �homogeneous� ex-
ternal magnetic field. Temperature and field scaling become
well separated in the sense that they originate in contribu-
tions to the free energy functional F�q�a�� from opposite
limits of a pseudodynamic variable 1 /a �see Ref. �22��, as
sketched by Fig. 1 �23�.

Critical phenomena are, in general, categorized by univer-
sality classes and described by criteria such as global sym-
metries. Certain details �on shorter range� become irrelevant
and suppressed in the regime of divergent correlation
lengths. In the early years of the development of phase tran-
sition theory and critical phenomena, Kadanoff’s pioneering
ideas of universality and rescaling, Stanley’s scaling theory,
and Wilson’s renormalization group led to the modern under-
standing of critical behavior �24�. In recent years the func-
tional renormalization group was advocated to understand
better disorder-related criticality �25�.

Freezing transitions into spin-glass phases were analyzed
in the renormalization framework too, the ordered phase it-
self remained, however, mysterious, in particular, for the
non-mean-field models. In a famous work on scaling in spin
glasses, Fisher and Sompolinsky �26� explained the compli-
cations of mean-field models �or mean-field regimes of
finite-range spin glasses above d=6 and d=8� and the mul-
tiple violations of scaling relations. In particular, they men-
tioned the violation of temperature-versus magnetic-field
scaling within the ordered phase. In a different manner, we
encounter this problem and explain a certain decoupling of
field from temperature scaling by the presence of two differ-
ent critical points of RSB in the low-temperature limit.

Crucial questions for a relationship of Parisi’s RSB with
the Fisher-Huse droplet theory �27� of the ordered phase of
real spin glasses �or their reconciliation� stimulated intensive
research �28,29�. Since droplet theory is interpreted to gov-
ern the ordered phase by a T=0 fixed point, it appears desir-

able to understand RSB as a T=0 fixed-point theory too.
Attempts have been independently made by several authors
and for different physical systems, as the examples of Refs.
�22,24,30–32� show.

In previous publications �22,30� we reported the existence
of two critical points and of discrete spectra, which survived
in the limit of infinite replica symmetry breaking ��-RSB�
for the SK model at T=0. This is perhaps surprising, since
the �-RSB limit is generally known only as the “continuum
limit.” Indeed, a continuum scaling theory, dealing with the
T→0 limit at �=�� was published by Pankov �31� recently.
Its role and limitation to the temperature-controlled critical
point CP1 has been addressed in our previous publication
�33� together with a comparison of our work with the much
older so-called PaT scaling �34�. In the present paper we do
not use Pankov or PaT scaling, but construct a different scal-
ing approach, which includes RSB-order scaling, and is ex-
clusively guided by the theory of critical phenomena. In ac-
cordance with previous �naive� functional renormalization-
group arguments �30� we analyze the approach to full RSB
formation ��→�� not only at T=0 but also in the �H ,T�
plane for small values of temperature T and magnetic field
H, and as a function of RSB order.

We consider RSB orders, counted by integers 1 ,2 , . . . ,�,
to define equidistant sites, which form a pseudolattice. In
analogy with a real-space lattice, which needs to be infinitely
large in order to allow for diverging correlation lengths and
hence support critical phenomena, the pseudolength cutoff �
must be sent to infinity. The known fact that increasingly
higher orders of RSB are needed �for good approximations�
as the temperature decreases towards zero implies the role of
T as an effective cutoff of nonanalytic behavior in the RSB
limit �T playing the role of a symmetry-breaking relevant
perturbation in standard critical phenomena�. It also suggests
the idea of scaling RSB order � with temperature T. Con-
versely, a maximum RSB order � serves as a cutoff of criti-
cality. A speciality of RSB is that it appears in the shape of a
pseudodynamical critical phenomenon �22,30�, which recalls
the celebrated dynamical representation of Sompolinsky
�35�. A technically important difference, however, is the ab-
sence of a stochastic field. We proposed its use in order to
represent couplings to faster degrees of freedom �36�.

A scaling theory, near T=0 in particular, is important for
several different reasons. First, it expresses the numerically
determined features of the SK model in a universal form due
to scale invariance. This helps to identify model-independent
features and places the SK model and its RSB into a wider
context. The scaling theory also puts constraints on the shape
of an effective field theory. It has the virtue of isolating criti-
cal features, which must be represented correctly by an ef-
fective theory that simplifies the SK model. The simpler
theory should allow one to control generalizations to finite
range or other complications, which are far beyond the goal
of the present work. Yet, the scaling theory offers a special
outlook on a possible scenario of RSB breakdown when the
collapse of the spin-glass phase �Tc→0� eventually com-
bines RSB criticality with the freezing transition.

The paper is organized as follows. Section II describes the
basic elements of the present scaling theory. The different
sets of scaling variables for both critical points, distinguished

H H

T T

Κ Κ

�a��� Κ��, T�H�0� �a�0� Κ��, T�H�0�

��1 ��2pseudodynamical variable
1
�����
a

FIG. 1. �Color online� Thermal critical behavior at CP1 versus
magnetic-field scaling at CP2: scaling regimes near the two critical
points of the SK model at zero temperature, zero field, and infinite
replica symmetry breaking. The critical points are separated by the
full range of continuously distributed pseudotimes 1 /a. Thick lines
indicate the relevant scaling variables.
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by two opposite pseudodynamical limits, are given. Section
III demonstrates how the order parameter function q�a� can
be regarded and obtained as a fixed-point function q*�a*�
under RSB flow �→�. Section IV includes and combines
finite temperature scaling near critical point CP1 with RSB-
order scaling. Scaling functions are obtained, which fit the
detailed data of 200 RSB orders, and explain the noncom-
muting singular limit �→�, T→0. In a similar way, Sec. V
includes magnetic-field scaling near CP2. In Sec. VI we
present unconventional scaling contributions to the free en-
ergy, to the entropy, and internal energy, which are compat-
ible with the numerical self-consistent solutions. In Sec. VII
the ground-state energy distribution is given as a function of
pseudotime and is also shown as a function of the �normal-
ized� Parisi levels l /� such that the flow towards an energy-
per-level fix-point function results as the RSB order tends to
infinity. In Sec. VIII we finally consider pseudodynamic scal-
ing of the order function q�a� in the vicinity of both critical
points before concluding with details of q�a� as revealed by
its derivatives in Sec. IX.

II. SCALING SCENARIO

We introduce the �RSB-�scaling idea by viewing the for-
mation of full RSB as a critical phenomenon with two criti-
cal points in the pseudodynamic limits a=0 and a=� at T
=0, H=0. We do not a priori impose a relationship between
the two critical points, but consider the pseudodynamical
crossover between them by means of the order function q�a�
on 0�a��. Figure 1 illustrates the relative position of the
two critical points and the sets of scaling variables near these
points.

In particular, one may notice that the dynamical variable
1 /a and the RSB order � define a �1+1�-dimensional anal-
ogy of problems with one time- and one real-space dimen-
sion. Since the free energy or internal energy are integrals
over all pseudotimes, as, for example, given below in Eqs.
�23� and �25�, we do not start from a single scaling hypoth-
esis for the free energy F. Instead we construct the scaling
hypothesis for each of the two different scaling contribu-
tions, originating in these separated critical points. As illus-
trated by Fig. 1, two different sets of scaling variables should
be used in order to match the numerical results.

It is remarkable that temperature- and magnetic-field scal-
ing become decoupled, because they belong to different scal-
ing regimes. Scaling with the respect to the order � of RSB
measures the approach of the equilibrium solution at �=�
�full RSB� and therefore can be viewed as a kind of nonequi-
librium dynamics �in the sense that each finite order is un-
stable towards higher RSB orders�. Thus an element of dy-
namic scaling is contained. Using the pseudotime 1 /a as an
additional scaling variable, we analyze the order function
q�a ;T ,H� and its pseudodynamic scaling behavior. A dy-
namic crossover between the two critical points CP1 and
CP2 is then described by means of q�a�. Moreover, the order
function is evaluated as a fixed-point function of the RSB
flow letting �→�.

The present scaling theory is then fitted to high precision
numerical data, which were obtained recently for the

Sherrington-Kirkpatrick model given by the Hamiltonian

H = �
i�j

Jijsisj − H�
i

si,

with quenched, infinite-ranged, and Gaussian-distributed ran-
dom couplings Jij �with variance J2 /N� between classical
spins si= �1. The method was described in Ref. �33� and
will not be described again in this paper. It allowed one not
only to go beyond earlier high-order studies �22�, but also
contained new analytical elements. As a consequence we are
able to predict the values of critical exponents, evaluate am-
plitudes, and calculate analytical models of various scaling
functions including cases with very singular crossover.

The numerical material includes the self-consistent solu-
tions in all orders of RSB up to �i� the current maximum of
�=200 RSB at T=0 and H=0, �ii� 50 orders for a dense grid
of finite temperatures in the range 0�T�0.3 for H=0, and
�iii� 20 orders of RSB for a dense grid of finite magnetic
fields 0�H�0.5 at zero temperature.

We note that all energies are given in units of J.

III. T=0-ORDER FUNCTION AS A FIXED-POINT
FUNCTION q*(a*) IN THE RSB LIMIT (�=�)

The idea of finding the T=0-order function as a fixed-
point function in the RSB limit arose from renormalization-
group arguments as designed in Ref. �30�. It reemerges now
in a literally obvious way when we plot in Fig. 2 the whole
set of numerical self-consistent solutions 	al

��� ,ql+1
��� 
 �and

	al
��� ,ql

���
� for l=1, . . . ,� of all evaluated RSB orders �
=1,2 , . . . ,200. These data become dense for large � and ap-
proach the desired order function q�a� in the limit �→�,
which can be viewed as a fixed-point function q*�a*�.

The unusual form q*�a*� can be justified as follows: the
parameters al

��� and ql
��� can be viewed as functions of the

FIG. 2. �Color online� The main figure and inset present a wide-
scale overview of all �T=0, H=0� self-consistent solutions
	al

��� ,ql+1
��� 
 and 	al

��� ,ql
���
, where l=1, . . . ,� for each RSB order �

=1,2 , . . . ,200. The RSB flow from small orders � �the dot size
decreases with RSB order �� to the highly dense regime �=200
demonstrates how the true order function q�a� �black curve� is ap-
proached by the densely spaced ql+1�al� from below and by ql�al�
from above. The inset shows the corresponding 	1 /a ,q
 data and
the function q�1 /a� they converge to. The shape near 	� 1

a =0,
�CP1� is almost Gaussian �dashed black curve: exp�−0.41 /a2�� but
crosses over for moderate and small 1 /a to strongly non-Gaussian
and a tail behavior q�	��1 /	.
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continuous variable l /�→� in the �→� limit. The fixed-
point solutions a*��� and q*��� can be combined by elimi-
nating the variable �, which results in the special form
q*�a*�, where the variable itself is made up from continu-
ously distributed fixed points. In the following we use q�a�
and q*�a*� synonymously and distinguish them only if nec-
essary.

At finite large orders one may define interpolating func-
tions ql+1�al�→q��a� and ql�al�→q
�a�, which yield lower
and upper bounds for the exact solution q�a��q*�a*� at each
value of a. Figure 2 illustrates that this channel between
lower and upper bound becomes extremely small for high
orders �=O�102�. An illustration of the exact q�a� being con-
fined within such a channel as the RSB order � increases
towards infinity, is provided in a more detailed way by
zooming different regions of crossover between CP1 and
CP2 in Figs. 3 and 4.

Figure 2 moreover shows deviations of q�1 /a� from
Gaussian behavior, which is a good approximation for small
1 /a. In both representations q�a� and q�1 /a� it illustrates the
existence of special lines, which terminate obviously in fixed
points—in fact there is a hierarchy of fixed points lying
dense on the interval 0�a��. We shall make explicit use
of these fixed points below.

Indeed, 200 calculated orders of RSB for T=0 already
yield an almost continuous function ql �

al+al+1

2 �, which finally
turns into q�a� in the RSB limit. Our previously published
analytical model function �22� satisfies almost perfectly this
constraint. Its form

qmodel�a� =
a

�a2 + w�a� 1F1��,�,−

2

a2 + w�a�
 �1�

models even the full crossover regime. The monotonically
decreasing “mass” function w�a� assumes a small constant
w�0��0.067, which prevents potentially nonanalytic small-a
behavior for arbitrary parameters � ,�, and guarantees a
strictly linear q�a� behavior in accordance with our high-

order data. In the crossover regime between these two dy-
namic critical points, w�a� can be modeled �using three pa-
rameters� to depress the maximum error of q�a� below
O�10−4� at each pseudotime. A unique choice of w�a� is not
yet found, but excellent fits are obtained with w�a� mono-
tonically decreasing from w�0��0.067 to w���=0 together
with the parameters ��0.558, ��1.87, 
2�1.41. Using the
high-order data we have thus been able to improve the ana-
lytic approximation of the T=0 order function q�a�.

A. Fixed points calculated from the RSB flow towards �=�

The full set of self-consistent solutions for order param-
eters ql and �T-normalized� Parisi box sizes al��ml�T� /T�T
=0 can be described by matrix elements pl,��	al,�
�al

��� ,ql,��ql
���
 labeled by RSB order � and level number

l. Since the number of ql parameters exceeds by one the
number of al parameters �in each order of RSB�, a second
complementary set of matrix elements p̃l,��	al,� ,ql+1,�

should also be taken into account. These points pl,� and p̃l,�
are displayed in the Figs. 2–6 and observed to approach the
exact q�a��q*�a*� along characteristic lines given below by
Eq. �2� as �→� �p from above and p̃ from below q�a�, since
ql+1,��ql,��.

The set of all RSB solutions up to a maximum order �, as
plotted in Fig. 2 with a cutoff at �=200, is then described by
two triangular matrices with entries 	al,� ,ql,�
 �or with
	al,� ,ql+1,�
�; the level numbers l run from 1 to � for each
RSB order �.

0.1 0.2 0.3 0.4 0.5
a

0.1

0.2

0.3

0.4

q�
a�

�a�,Κ, q�,Κ�

�a�,Κ, q��1,Κ�

FIG. 3. �Color online� Self-consistent 	a ,q
 data in the small-a
regime are shown for all �=1,2 , . . . ,200 RSB orders, together with
an analytical model function q�a� �dashed gray line�. Solutions
	al,� ,ql+1,�
 �above the line� and 	al,� ,ql,�
 �below� approach fixed
points under RSB flow obeying the constraint �=��l�, l level num-
ber. Fixed-point examples for �= l�m+1� /m−k /m−1, 23�m�6
and k integer are shown �big red dots along the dashed line� includ-
ing the fixed point �0,0� �RSB flow along �= l+k�. The analytical
model function for q�a� matches well all fixed points.

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
a

0.62

0.64

0.66

0.68

q�
a�

�a�,Κ, q�,Κ�

�a�,Κ, q��1,Κ�

0.3 0.35 0.4 0.45 0.5
a

0.2

0.25

0.3

0.35

0.4

q�
a�

�a�,Κ, q�,Κ�

�a�,Κ, q��1,Κ�

FIG. 4. �Color online� Two examples of alignment of solutions
	a ,q
 under constrained RSB flow with ��l� towards two fixed
points �big dark-red dots�: �upper figure� p

m=7,n=6
* ��a*,q*�m=7,n=6

= �0.3820,0.2976� and �lower figure� p
m=3,n=2
* ��a*,q*�3,2

= �0.9133,0.6559�. Padé-line intersections, shown for p
7,6
* in Fig. 5

and for a large-a fixed point in Fig. 6, determine the fixed points. A
closer look shows that RSB fix points lie dense and yield a fixed-
point function, well approximated by the model function q�a�
�dashed gray�.
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Along infinitely many lines in �l ,�� space—the leading
ones are very clearly visible in Figs. 3 and 4 �and shown as
calculated in Figs. 5 and 6�—we observe very smooth behav-
ior of slowly changing parameters �al,� ,ql,��, which allow
low-order Padé approximants to match these data and to join
in fixed points p* of the order function curve for �=�. A
special case is the origin where the best Padé approximations
�for example, obtained for l=� in Fig. 2� deviate only by
O�10−13� from the exact value �0,0� in the RSB limit.

Typical examples of such characteristic lines in �l ,��
space can be given by the linear relation among the labels

�l + k,� =
m

n
l + k − 1� �2�

�viewing l� lmin� l0=n as the running index� with steps of
�l=n and m ,n ,k integer valued. The choice of m /n selects
one fixed point of the RSB flow as �→� with l→�. Steps
of �l=n are required to generate integer values for � �other-
wise we would not have numerical data�. The integer k dis-
tinguishes different lines, which all meet in the same fixed
point. Thus the fixed point �a* ,q*� is labeled by m and n or
just by the rational number m /n. We have evaluated more

than 50 fixed points belonging to the exact order function
q�a�. The higher n the larger must be the steps �l, hence one
needs higher orders of RSB to find enough data points for
reasonable curve fitting through these points. This is one
limitation of the method, but the almost linear character of a
large number of these lines allows one to calculate, in prin-
ciple, a number of fixed points much larger than the order of
RSB.

B. Discrete spectra in the �=� RSB limit at zero temperature

While the fixed-point functions can be derived for all
pseudotime values 1 /a, the points a=0 and a=� remain spe-
cial limits. In a recent paper �22� we have shown that infi-
nitely large subclasses of certain self-consistent parameter
ratios remain discrete at T=0 or H=0 even in the continuum
limit. These discrete levels reside in the limits a=0 and a
=� when �=�. Finite temperatures lift the discrete spectrum
at a=� into the continuum, while a magnetic field has a
similar effect on the discrete levels at a=0. The ratios as-
sume the value 1 then. The discrete spectra therefore empha-
size the critical nature of the points a=0 and a=�. We
present in the following subsections new results for these T
=0 levels of parameter ratios and, in Sec. IV, describe their
singular finite T crossover.

1. Level distribution at CP2

At the critical point CP2 the subclass of small self-
consistent parameters qi and ai, which vanish in the �-RSB
limit �and condense into CP2�, obey

q
l̄+2

q
l̄+1

=
2l − 1

2l + 1
and

a
l̄+2

a
l̄

=
l

l + 1
, �3�

with l̄��− l and l=1,2 , . . . , lmax��; thus the ratios of these
parameters are discrete and almost equidistant �22�. Recur-
ring these relations to the smallest parameters of each RSB
order �, hence to q�+1 and a�, respectively, we obtain

q�+1−l = �2l + 1�q�+1, a�−l = �l + 1�a�. �4�

The RSB flow of numerical data up to 200 RSB allow one to
conclude that these minimal parameters vanish like

qmin � q�+1 =
1.03059

�
+

1.31705

�2 + O�1/�3� , �5�

amin � a� =
2.77275

�
+

3.54347

�2 + O�1/�3� . �6�

The discretized slope of the order function in the point a
=0, assumes the 200 RSB value

q
l̄
− q

l̄−1

a
l̄
− a

l̄−1

=
2q�+1

a�

� 0.74345, �7�

or, by Padé approximation of the RSB flow and extrapolation
to �-RSB, one obtains

0.375 0.38 0.385 0.39

0.26

0.28

0.3

0.32

0.34

a�,Κ

q��i,Κ

�a�,Κ, q�,Κ�

�a�,Κ, q��1,Κ�

FIG. 5. �Color online� Padé approximants matching the RSB
flow of discrete solutions �dots� ql+i,� at al,� �for 1���200 and
i=0,1� along �= 7

6 l−k /6−1 for integers k=−4,−3, . . . ,4, with ini-
tial values l0=6+k, �0=6+k, and �l=6. All lines join in the RSB
fixed point p

7,6
* = �0.3820,0.2976� as �→�. �Padé curves are dis-

played here without termination at the fix point.�
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FIG. 6. �Color online� The inset displays a fixed-point example
in the a�1 regime with nonlinear RSB flow along �=6l+k, k
=−2,−1, . . . ,2, modeled by Padé curves ending in a large-a fixed
point. Its position �big dot� at 	10.6736,0.9964
 is also shown in the
main figure with respect to a set of 50 other fixed points �small
dots�, which agree well with the model function q�a� as shown in
the main figure.
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q��0� = 2 lim�→�

q�+1

a�

� 0.743 368. �8�

As the calculation of fixed points of q�a� in the linear
small-a regime shows, this agrees with the slope of the con-
tinuous q�a� for a→0. The slope of the order function in CP2
provides a quite accurate constraint for the order function

qmodel� �a = 0� =
1

�w�0� 1F1��,�,−

2

w�0�
 � 0.743 368.

�9�

2. Level distribution at CP1

In the large-a limit the characteristic features are discrete
spectra of 1−ql ratios, which are shown in Fig. 7. In addi-
tion, Fig. 8 shows that the 1

a2 coefficient of the almost con-
tinuous order function converges towards 0.41 except for the
largest a levels. At zero temperature the order function dif-
fers from 1 by 0.41 /a2. Thus, according to the large-a ex-
pansion of our analytical model, the expansion coefficient is
constrained to satisfy

q�a� = 1 −
�
2

�

1

a2 + O�1/a4� = 1 − 0.41
1

a2 + O�1/a4� ,

�10�

putting a constraint on �
2�. Further constraints can be
found from very precise numerical characteristics; it is

planned to use this analysis to narrow down the choice of an
analytical order function model.

The discrete spectrum yields a coefficient, which differs
notably from this value, as one can see from Fig. 7 �right� for
the leading divergent al parameters.

C. Approach of equilibrium at T=0: Leading and subleading
scaling contributions

The nonequilibrium susceptibility �1 is a characteristic
quantity measuring the distance from the equilibrium solu-
tion at �=�. The entropy had been seen �33� to vanish like
the square of �1. The numerical solutions �33� for �1, evalu-
ated for all 200 leading RSB orders, are well fitted by the
T=0 form

�1��,T = 0� �
0.86

��0 + ��5/3 +
1.85

��0 + ��4 + ¯

= 0.86�−5/3 − 1.83�−8/3 + 3.12�−11/3

+ 1.85�−4 + ¯ , �11�

with �0�1.278. As discussed in Ref. �33� the numerical un-
certainty of O�10−6� in the exponent is so small that the
expectation of a rational-valued exponent due to one dimen-
sionality leads to the firm prediction of �1��−5/3. The qual-
ity and density of the numerical results is even high enough
to predict the subleading correction and the amplitudes as
well.

IV. FINITE TEMPERATURE SCALING NEAR
THE CRITICAL POINT CP1 (a=�, T=0, H=0)

Naturally one would like to start with a scaling hypothesis
for the free energy F. However, the SK model has two criti-
cal points at T=0 and the free energy picks up contributions
from both; in the RSB limit, it can be expressed by integrals
over an entire crossover range from a=0 �CP2� to a=�
�CP1� involving the order function q�a�.

Thus it turns out useful to start with the scaling behavior
of the self-consistent parameters al and ql, which teaches us
how to embed scaling into the order function q�a ,T� medi-
ating the crossover between the two critical regimes. Finally,
by expressing free energy and internal energy in terms of the
order function, and by linking the entropy with the nonequi-
librium susceptibility, we shall arrive at consistent scaling
predictions for F, U, and S below.

Let us begin with temperature-normalized block size pa-
rameters

al��,T� �
ml��,T�

T
, �12�

where we consider first scaling in the �� ,T� plane for fixed
label l. We must analyze the singular behavior near the criti-
cal point CP1, where diverging al�� ,T=0�→� for �→�
lead to discretely spaced ratios al�� ,0� /al−1�� ,0� in the
�-RSB limit. We identified the large-order power-law diver-
gence

20 40 60 80 100
level number �

0.2

0.4

0.6

0.8

1

∆q
�
�∆

q �
�

1 discrete spectrum of
∆q
�����������������

∆q
��1
�

1 � q������������������������
1 � q��1

FIG. 7. �Color online� The discrete ratios �ql /�ql−1 of �ql�1
−ql, which vanish for �→� at T=0, as obtained by Padé extrapo-
lation to the RSB limit, plotted versus the level number l.
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level number � of the largest a�levels
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�0.35
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�q
�a
��

1�

50RSB
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100RSB

FIG. 8. �Color online� The figure shows convergence of the
large-a behavior of a2�q�a�−1� towards �−0.41. Levels belonging
to the discrete spectrum at a=� show a deviation.
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al��,T = 0� � �5/3, � → � �13�

for the subclass of large parameters al �their number also
grows to infinity as �→��.

The linear temperature decay of all Parisi box sizes
ml�� ,T��T holds for all finite RSB orders, but not all m’s
should vanish in the RSB limit at zero temperature, since the
break point is not expected to be at m1=0 �even in the T
→0 limit �37,38��. Thus, one should describe noncommuting
limits T→0 and �→� properly.

The Taylor series, valid as a low-temperature expansion
for any fixed finite RSB order,

ml��,T� � al��,T�T = al��,0�T + al���,0�T2 + O�T3� ,

�14�

will anyway break down for those levels l for which the
expansion coefficients diverge as �→�. In accordance with
the anomalous power law �13� it will be shown below by
means of the fixed-point order function that the correct scal-
ing form for this CP1-divergent parameter subclass reads

al��,T� = �5/3fal
�T/�−5/3� , �15�

where the scaling function is well approximated by a low-
order �2, 3� Padé series �one may also use a �1, 2� or �3, 4�
series�

fal
�x� =

c0,l + c1,lx

1 + d1,lx + d2,lx
2 . �16�

This form fits well the available finite T data up to 50 RSB
and satisfies

fal
�0� = c0,l finite and fal

�x� �
1

x
for x → � . �17�

The crossover line can be described by the characteristic
�crossover� temperature

T1��� � �−5/3. �18�

Beyond the crossover line, for temperatures T�T1���, the
box sizes ml�x�=x fal

�x�, which belong to the CP1-divergent
subclass of al’s, approach finite temperature-independent val-
ues. One obtains

lim
x→�

ml�x� = c1,l/d2,l. �19�

While direct fits of our numerical data yield already a crude
estimation of m1��� for the break point, it was mentioned in
Ref. �33� that 50 RSB is not sufficient to determine the break
point for arbitrary low temperatures. Yet, for T=0.015 a re-
liable break point value was determined by another proce-
dure.

Here we are interested to obtain a good estimation of the
break point in close connection with the scaling picture.
Therefore we employ the fixed-point method and indeed suc-
ceed in finding a good approximation down to even lower
temperatures and also answer the question whether the limit
ml��� in Eq. �19� shows a level index dependence or not. For

finite ml an l dependence would have implied a discrete dis-
tribution. We shall find in Sec. IV A that all ratios become
level independent in the large x limit

ml�x�
ml−1�x�

=
al�x�

al−1�x�
=

fal
�x�

fal−1
�x�

→ 1 for x → � . �20�

The crossover from discrete parameter spectra for T�T1���
to the continuum on the other side of the crossover line, for
T�T1���, is a rather singular effect mediated by the scaling
function. We introduced above a scaling function, which al-
lows one to suppress the discrete spacing between q and a
parameters as one moves through the crossover line T1���
��−5/3.

A. Forbidden level crossing at finite temperatures determines
the break point

We employ now the RSB fixed-point technique to extract
approximate values for the break point for rather low tem-
peratures.

For this purpose, we consider fixed finite temperatures T
and fixed level numbers l �down to lowest T and l small to
catch the diverging-a subclass near CP1� and study the RSB
flow of the solutions 	al��� ,ql���
, and also those of the
complementary type 	al��� ,ql+1���
, from low orders up to
�=50 as illustrated by Fig. 9 for an arbitrarily picked tem-
perature T=0.03. Padé approximants fit the RSB flow well
and these extrapolated curves meet precisely in the same
point. These curves would cross each other, but then violate
the reality condition of the self-consistent method beyond the
level crossing point. We consider the level crossing point
therefore as the limit of the nontrivial part of the order func-
tion, hence as the break point.

The scenario remains the same for arbitrary fixed tem-
peratures; only the extrapolation range increases with the
level number and therefore becomes less accurate for smaller
temperatures. Yet reliable solutions were obtained down to
temperatures T�0.005. The figure inset emphasizes the fact
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0 � a��Κ,T� � 1�T
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� 50 10RSB
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1
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ln �a��Κ,T�0.03��
��1

��6

� 50 10RSB

�0.008
�0.006
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�0.002

0
ln �q��Κ,T�0.03��

��1

��6

level crossing limit ���RSB� : break point

plateau�range

1�Κ 1�Κ

continuous nontrivial regime

FIG. 9. �Color online� The main figure shows the RSB flow of
	al��� ,ql���
 �above� and of 	al��� ,ql+1���
 �below�, for each of the
six highest parameter levels �l=1, . . . ,6� at fixed temperature T
=0.03. Padé approximations model the flow �→� by extrapolation.
�=� is reached in the level crossing point LCP
= 	ak����18.226,qk����0.9986
, which separates plateau regime
LCP�a�1 /T from the �-RSB continuum 0�a�LCP. The Parisi
box size m�T=0.03�=0.5467 is the break point value. The inserts
illustrate that ql and al levels meet in the LCP for �=�.
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that the solutions indeed reach the level crossing point as �
→�.

Approaching zero temperature and the RSB limit along
the crossover line, x fixed, with T1�����−5/3, leads to a dis-
crete set of different Parisi box sizes ml��=� ,T=0�.

B. Nonequilibrium susceptibility �1

The scaling form of the nonequilibrium susceptibility
�1�� ,T� can be given in terms of a scaling function f1 by

�1��,T� = �−5/3f1�T/�−5/3� , �21�

where f1�x��x, x→�, and f1�0��0.86, reproduces the data
and the leading � decay at T=0, as in Eq. �11�.

V. MAGNETIC-FIELD SCALING AT CRITICAL POINT
CP2 (DIVERGING PSEUDOTIMES 1 Õa\�)

The magnetic-field dependence at T=0 is expected to
yield a plateaulike cutoff of the order function of similar
shape as described in the Parisi form q�x�. We study now the
field dependence of the smallest-order parameter q�+1�H ,T
=0� in �th order of RSB. Twenty orders of RSB turn out to
be enough to extract the exponent describing the decay of
q�+1 as the order of RSB tends to infinity. Guided by the
results for finite temperature, where one single nontrivial ra-
tional exponent appeared, we observe an exponent 2 /3 to
provide a reasonable picture for extrapolation towards
�-RSB �Fig. 10�.

We first identify the qi��−1 law for �infinitely many�
order parameters, which vanish as �→�. The scaling hy-
pothesis for �� ,H� scaling �39�, valid for the vanishing-order
parameters qi�� ,H�, can be formulated as

qi��,H,T = 0� =
1

�
f i�H2/3

1/� 
 , �22�

with f i�0��0 and f i�x→���x.
The numerical procedure chosen in order to arrive at this

proposal has been to extrapolate to �-RSB the smallest qi

values at fixed nonvanishing small magnetic fields. The
higher the field the less orders of RSB are needed �similar as
in the case of finite temperatures�. Twenty steps of RSB gen-
erate almost exact results down to H�0.15. Extrapolation of
the RSB flow is hence reliable down to much smaller field
values, where one has already entered the critical regime.
Thus many RSB fixed-point values �at �=�� are well ap-
proximated and can be used to match a power-law with re-
spect to the magnetic field. In this way the magnetic-field
exponent of Eq. �22� is found to differ only by 0.003 from
the value 2 /3, which led to the assumption that this rational
number is exact �Fig. 11� .

VI. SCALING BEHAVIOR OF THE FREE ENERGY F,
INTERNAL ENERGY U, AND ENTROPY S

Low-temperature expansions of internal energy U, en-
tropy S, and the free energy F=U+TS were reported in the
framework of our high-order RSB analysis, and found in
agreement with already known results. In the present context
of scaling theory, we also look for scaling of RSB parameters
together with temperature and also small field variation. A
useful way to study the RSB flow in terms of � scaling is by
invoking the internal energy formula at T=0 and H=0,

U��,T = H = 0� = − �1 −
1

2�
l=1

�

al�ql
2 − ql+1

2 � �23�

⇒ lim
�→�

U��,0� = −
1

2
�

0

�

da�1 − q�a�2� . �24�

The summation includes contributions from both critical
points and from the crossover regime in between. Conse-
quently, one cannot expect to obtain scaling laws from a
single hypothesis imposed on the total free energy. The prob-
lem has more in common with critical dynamics, however,
with two critical points in the long pseudotime limit �1 /a
→�� and in the short pseudotime limit �1 /a→0�.

As reported in Ref. �33� the free energy has a low T
expansion in the RSB limit given by F=F�T=0�−S�T=0�T
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FIG. 10. �Color online� Upper and lower bounds of the order
functions are shown for 	20 RSB, H=0.3
 and in 200 RSB for zero
field. For comparison the H=0 fixed-point order function �green� is
included. The interpolated order function and two fixed points for
finite field H=0.3, as obtained from the 1–20 RSB flow extrapo-
lated to �=� �light-gray lines�, almost coincide with the H=0 result
above the plateau value. The fixed point at a

pl
* =0.568, q

pl
* =0.448

defines the plateau cutoff of q�a� in the finite field H=0.3.
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FIG. 11. �Color online� Numerical data for the magnetic-field
range 0�H�0.5 are shown from first to 20th order of RSB
�green�. Dots �dark red� show the plateau-height small-q cutoff ob-
tained from the fixed-point order function. At H=0 dots show the
calculated orders up to 200 RSB for comparison. The RSB flow for
qmin�� ,H=0� is given by a 1 /� law, while qmin��=� ,H� obeys an
H2/3 law.
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+�k=2fkT
k, where the leading temperature behavior is F��

=� ,T�−F�� ,0��T3. The leading large-� correction of the
T=0 free energy has also been reported to decay like �−4.

In the large-a regime, temperatures scale like �−5/3 and
hence the large-a scaling contribution is �F��−5. Thus the
leading temperature dependence belongs to a subleading
�F��−5 correction.

We attempt to distinguish singular scaling contributions
from both critical points from the nonsingular contributions
to the free energy. The small-a-regime contribution can be
estimated from

F�� = �,T = 0� = U�� = �,T = 0�

= E0�H� = −
1

2
�

0

�

da�1 − q2�a�� − M�H�H ,

�25�

where M�H� denotes the field-generated magnetization. Re-
calling the small-a expansion of the order function, q�a�
�a−const a3+O�a5�, one must expect an H10/3 contribution
from the plateau regime, which implies also an O��−5� con-
tribution. The free energy data are compatible with an H10/3

small field scaling part.
It must be concluded that the leading correction �−4 must

originate in the intermediate a regime �not yet identified in
detail�. It can, after all that was said before, not be assumed
to be a scaling contribution. We should therefore attribute it
to the regular free energy part.

The entropy was found to obey �33�

S��,T = H = 0� = −
1

4
�1��,T = H = 0�2.

It is known that only the large-a regime near CP1 is respon-
sible for the leading � behavior of �1 at zero temperature,
hence this holds also for the entropy S�T=0�. Since thermal
behavior is also caused by the CP1 contributions, we can
therefore claim that the scaling contribution to the entropy
obeys

Ss��,T� = �−10/3fS�T2/�−10/3� , �26�

with fS�x�=−0.72x �see Ref. �33�� for x→� and fS�x�
�−0.185 for x→0. Thus the entropy contributes to the lead-
ing O�T3� low-temperature correction of the free energy. This
TS term contributes again only a subleading correction �F
��−5 from the large �-scaling regime.

Let us recall the large-� dependence of the free energy at
zero temperature, well described by the optimal fitting form

F��,T = 0� = F��,0� +
c4

�� + �0�4 +
c5

�� + �0�5 + ¯ ,

where excellent Padé fits yield the constant �0=1.28. The
leading correction �−4 does neither originate from the scaling
regime near CP1 nor from that near CP2, and hence must be
expected not to scale. We therefore consider it as part of a
regular F contribution Freg�� ,T ,H�.

Thus we propose that the free energy consists of a sum of
a regular and of two singular parts, where the latter ones
scale according to whether they are CP1 or CP2 critical.

As a consequence of this two-critical-point picture and in
agreement with the numerical data, we separate two singular
contributions, which offer different scaling behavior, from a
regular part Freg by

F��,T,H� = Freg��,H,T� + Fs
�CP1���,T� + Fs

�CP2���,H� ,

�27�

where the magnetic-field controlled critical point CP2 and
the temperature-controlled critical point CP1 contribute, re-
spectively,

Fs
�CP1���,T� = �−5fcp1�T/�−5/3� , �28�

and

Fs
�CP2���,H� = �−5fcp2�H2/3/�−1� , �29�

with fcp1�x��x3, fcp2�x5 for x→� and both finite for x
→0. This claim refers to the leading scaling behavior at CP1
and CP2; corrections with analytic T dependence near CP2
and analytic field-dependent corrections near CP1 may oc-
cur.

A contribution − 1
2����H2 term, which yields the linear

equilibrium susceptibility from −�H
2 F, belongs to the regular

part Freg with ���→� ,T�Tc�=1.
It is interesting trying to translate the given power laws

into scaling with the number N of spins for the finite N SK
models �40�, which corresponds to a finite-size system with
N=Ld, d denoting the real-space dimension. Scaling with L
or N delivered a leading correction �N−2/3 for the finite SK
model �19,20�. If we would assume scaling of the leading
correction �−4 with N, a scaling function depending on
N−1/6 /�−1 would result �41,42�. However, this rests on the
assumption that the leading N−2/3 energy correction arises
from the entire a regime. Many open questions seem to show
up here.

VII. FIXED-POINT DISTRIBUTIONS

A. Ground-state energy E0

We can extract more detailed information from our nu-
merical analysis of RSB in the SK model �22,33� beyond the
calculation of the global ground-state energy. The RSB flow
of the energy-level distribution and naturally the energy den-
sity �0�a� as a function of pseudotimes can be given. In the
latter case, a test of our analytic order function model against
the numerical results �33� is provided by the use of q�a� and
of q��a�. Both are required in the ground-state energy for-
mula in Eq. �25� according to

E0 = �
0

�

da�0�a� = − �
0

�

daaq��a�q�a� . �30�

Using the analytic form �3� and high RSB-order results for
�=100,110,120, . . . ,200, we obtain Fig. 12 �43�. We do not
find exponential tails in this energy distribution, instead we
observe simple power-law decay in the limits of small and
large a.

A second important representation shows the energy-level
contributions from
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�0�l,�� = −
1

4
lim
T→0

al����ql
2��� − ql+1

2 ���� , �31�

as a function of normalized level index l /�, and with bound-
ary conditions a0=�, q0=1. The sum over all energy levels
�0�l ,�� with level index l=0,1 ,2 , . . . ,� for each calculated
RSB order yields the RSB flow of the ground-state energy

E0��� = �
l=0

�

�0�l,�� �32�

towards the exact value �33� E0��=��=E0. A proper normal-
ization of level numbers by the RSB order �, displays the
level distributions for each RSB order on the same interval
of unit length. Subsequent rescaling of the energy level al-
lows one to visualize the RSB flow towards one fixed-point
energy distribution �which of course depends on the rescal-
ing factor �44��. Figure 13 shows two choices �l and � re-
scaling of �0�l ,���—in both cases the convergence towards
the fixed-point function is obvious.

Fixed points �under RSB flow� have been calculated in
the same way as shown before for the order function. For
example, fixing l /� to a rational number m /n within the unit
interval, one can see many of the leading fixed points in Fig.
13 following the RSB flow along vertical lines fixed by m /n.
The piecewise dense set of calculated fixed points was ob-
tained by an extrapolated Padé approximation for n

=2, . . . ,51 with m=1, . . . ,n−1. These fixed points are shown
in Fig. 13 together with their fit function, obtained here as an
�8,8�-Padé series. The fixed points are piecewise dense with
some gaps near “leading” fixed points �e.g., which become,
however, closed as higher orders are evaluated�. The fit func-
tion �interpolating between the dense regions� represents an
approximation for the exact fixed-point energy distribution
function �

0
*��� with l /�→� in the �-RSB limit. The numeri-

cal integration of the approximated function �
�
*��� �which

corresponds to �*�a� of Eq. �30� transformed from 0�a
�� onto the unit interval 0���1� yields �45�

E0
* � E*�T = 0� = �

0

1

�d��
�
*����approx � − 0.763 14.

�33�

By reproducing the correct value �33� up to O�10−5�, this
provides a good test of the fixed-point method. An alterna-
tive calculation, using Eq. �30� with a plugged-in fixed-point
order function confirms the numerical value E

0
*. The inserted

figure shows the magnitude of energy corrections per level l
occurring from 200 RSB to the exact �-RSB energy per level
�recall that l labels the Parisi boxes of the RSB order param-
eter�.

Different power-law decays are observed in the small l /�
�CP1� and in the l /��1 range near �CP2�.

B. Equilibrium susceptibility per level

To conclude this section we extend the described method
to the ��a� density of the equilibrium susceptibility � and, in
particular, to the distribution per level l. In the RSB limit, the
total � is known to be equal to 1 in the entire ordered phase.
The RSB flow thus moves towards a fixed-point function
��a�=aq��a� with the property �0

�da��a�=1 �this had been
used before as a constraint for our analytical order function
model �22,30��.

Let us now study the RSB flow of the discrete represen-
tation ��l ,��=al����ql���−ql+1����. The result for the sus-
ceptibility per level l �normalized by RSB order �� is shown
in Fig. 14 �and corresponds to the energy-per-level distribu-
tion shown in the preceding figure�.

Beyond the flow of the finite RSB orders �
=10,20,30, . . . ,200 we have added the fixed-point function
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FIG. 12. �Color online� The �negative� energy density −�0�a� of
the ground-state energy E0=�0

�da�0�a�, obtained from our analyti-
cal model function q�a� as −��a�=aq��a�q�a� �black curve�, is
shown to agree well with discrete numerical 200-RSB results �green
dots�.
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FIG. 13. �Color online� Part �a� shows ground-state energy solutions �dots� for ��0�l ,�� �or l�0�l ,��� and their RSB flow from �=10 to
�=200, ��=10, towards their fixed-point functions ����

�
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�
�
*��� for the susceptibility density �i.e., ��a� transformed

onto the unit interval 0���1�, which must obey
�0

1d��
�
*���=1. A simple approximate calculation of the inter-

polating fixed-point function reproduces the exact constraint
with an error of only O�10−5�. Again this confirms the power
of the method, which can, e.g., be used to test analytical
proposals.

Small changes from 200 RSB to � RSB are resolved in
Figs. 14 and 13. Their tendency is to make the distribution
more symmetric. Yet the distribution per normalized level
remains asymmetric as for the energy distribution �as a func-
tion of the dense levels l /��, a universal fact that has been
observed as a special feature of the SK model in contrast to
symmetrical distributions finite-range spin glasses.

VIII. SCALING WITH THE PSEUDODYNAMICAL
VARIABLE OF THE ORDER FUNCTION q(a)

In previous publications we found a Langevin-type repre-
sentation �22,36� for a logarithmic derivative of the order
function q�a� with respect to 1 /a. This ordinary differential
equation �without stochastic field� is much simpler than the
exact partial differential equations, which is a consequence
of the existence of scaling behavior and of homogeneous
functions. It is well known that scale invariance and the so-
called similarity method reduce partial to ordinary differen-
tial equations �46�. Therefore, at least near the critical points
one can expect ordinary differential equations to describe
RSB.

The Langevin type of differential equation could, how-
ever, be reshaped in terms of different pseudodynamic vari-
able a, 1 /a, or other forms. The differential equation remains
to be relaxational and thus there remains some arbitrariness
in the choice of the proper “time” variable 	. If we wish to
apply dynamic scaling to the RSB representation, we are
unfortunately bound to make a definite choice. Let us con-
sider a+1 /a as a pseudotime in order to conform with the
expectation that critical behavior at either of the points CP1
or CP2 should occur in the long-time limit. Then at CP1 we
would get 	�a→� while 	� 1

a →� at CP2.
We may now consider pseudodynamical scaling by study-

ing the a-dependent quantities like the order function near
CP1 and CP2.

Near CP1 the order function obeys

q�a,�,T� = 1 + a−2fq�T2/a−2,a2/�10/3� , �34�

with fq�x ,0��x, fq�0,x��x, and fq�0,0� finite.
In terms of the transformed order function

� � �1/a ln„q�a�… , �35�

one gets ��1 /a at �=�, T=0 and ��T at a=�, �=�. If
one defines an exponent � by ��T� �in analogy with stan-
dard phase transitions�, one obtains �=1. Similarly, the char-
acteristic RSB crossover “length” 
���c�a3/5�T−3/5 al-
lows one to extract an exponent �=3 /5, again by using the
exponent definition 
�T−� of standard critical phenomena.
The analogy obviously uses a vanishing critical temperature
Tc=0.

One would like to go one step further and identify a
pseudodynamic exponent z according to the pseudo-time-
length relation 	�
�

z . However, this runs into the difficulty
that a pseudotime 1 /a would vanish near CP1. As discussed,
the choice 	=a+1 /a allows one to describe both CP1 and
CP2 as long-time limits, and the conclusion would be z
=5 /3 and z�=1. This set of exponents �=1, �=3 /5, z
=5 /3 characterizes the universality class of RSB at CP1 �for
the given choice of variables�. This should provide a hint for
the desirable comparison with other systems, which may be-
long to a similar universality class �see also chapter outlook�.

IX. DETAILED STRUCTURE OF THE ORDER FUNCTION
DERIVATIVES q�(a) AND q�(a)

The derivatives depend much more specifically on the
pseudotime variable than q�a� itself. Failure of an analytic
model function becomes detectable more easily in the de-
rivatives. In order to control our modeling, we studied ana-
lytical fits firstly of all 200-RSB data, and secondly of the 50
calculated fixed points. Taking q��a� directly from the ana-
lytical form q�a� as given by Eq. �1�, we find good agree-
ment with the discretized slope calculated from the fixed
points. This is demonstrated in the main part of Fig. 15. In
addition, the insert shows the second derivative �a

2q�a�,
where the two analytic models �red and blue curves� show a
small difference. The maximum seen in q��a� expresses the
Crisanti-Rizzo curvature �22,38�, a slight nonlinearity of the
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FIG. 14. �Color online� RSB flow of the equilibrium suscepti-
bility per level l from �=10 to �=200 �in steps of ten orders of
RSB and rescaled by l→ l /� to a unit interval� towards the fixed-
point susceptibility distribution �

�
*��� �red line�.
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order function in the small-a regime. It is, however, this
contribution, which renders an analytical fit rather awkward.
An analytical model, which fits well the neighborhood of the
critical points a=0 and a=�, can have a simpler shape �30�,
but we want to get the pseudodynamic crossover right as
well. Global quantities such as the energy �integral over all
a�, picking up only relatively small contributions nearby the
critical points, depend on the crossover regime modeling.
This can be seen in Eq. �30� as well as in Fig. 12 for the
energy density.

X. CONCLUSIONS

In this paper we formulated a scaling theory of the flow
towards full replica symmetry breaking �RSB� at T=0, for
finite temperatures, and for finite magnetic fields in the SK
model. Several fixed-point functions of RSB flow were
evaluated.

The analysis was guided by
�1� a large set of high-precision numerical data, with up to

200 self-consistently solved orders of replica symmetry
breaking for the T=0 SK spin glass and still a high number
of orders for finite temperatures and magnetic fields,

�2� the identification of two critical points �at zero tem-
perature and zero magnetic field�, which are distinguished by
two different pseudodynamic limits as obtained in an ana-
lytic picture of a Langevin-type equation in Refs. �22,30�,
and

�3� representing nonanalytic behavior near each of these
critical points in the framework of the scaling theory of criti-
cal phenomena.

Power laws and scaling functions were identified by fit-
ting the leading 200-RSB orders of self-consistent solutions
deep inside the SK spin-glass phase; noninteger exponents
were found and identified as rational numbers, characteristic
of one-dimensional RSB behavior. This one-dimensional
�1D� character originates in correlations on the pseudolattice
of RSB orders, as a function of the quasicontinuous variable
1 /�. By means of scaling functions we demonstrated how
this nonanalytic RSB behavior enters in temperature- and
field-dependent power laws of the ordered phase.

The universality class of replica symmetry breaking in the
SK model calls for comparison with other physical systems.
Comparable features can, for example, be expected in the
order parameter fixed-point function �47�.

The decoupling of a magnetic-field-sensitive critical point
from a temperature-sensitive one was embedded in an un-
conventional scaling hypothesis for the free energy and
found to be consistent with the numerical data.

The RSB flow was used to generate an order parameter
fixed-point function, serving as a crossover between the two
different pseudodynamical critical limits. Its fine structure
was revealed by the leading derivatives, again confirming the
excellent agreement between analytical model and fixed-
point function.

XI. OUTLOOK AND A SHORT DISCUSSION OF SIMILAR
UNIVERSALITY CLASSES

The given description of RSB universal behavior in the
SK model �SK-RSB� should stimulate the search for compa-
rable behavior in different physical and interdisciplinary sys-
tems. Comparing the set of exponents given in this paper
suggests a list of such candidates; for the sake of brevity we
mention only a few.

The pseudodynamical differential equation for the low-
temperature SK model as derived in Ref. �33� can be trans-
formed into a Burgers-like equation with generalized coeffi-
cients �depending in general on q��a��. Its nonlinear part
dominates at large a; the linear term dominates the small-a
regime. Since random stirring is absent in this �-RSB flow
equation, it differs from a one-dimensional Kardar-Parisi-
Zhang �KPZ� equation also by a missing noise term �48,49�.
A remarkable qualitative analogy, however, exists between
the a=0 and the a=� critical points of SK-RSB on one hand
and linear �Edwards-Wilkinson� or nonlinear fixed points of
the KPZ equation �48� on the other. In KPZ growth, the
nonlinear part results from lateral correlation �parallel to the
interface�, while the nonlinear part of SK-RSB originates in
the large-a regime with maximal order parameter q�a�→1.
Recently, Canet and Moore �50,51� reported, apart from the
exact 1D result for the dynamic exponent z= 3

2 , an approxi-
mate solution of RSB type for the KPZ equation, where the
dynamic exponent assumed the value z= �4+d� /3 below two
dimensions, hence z= 5

3 in 1D, which can be made to agree
with the pseudodynamic exponent of the RSB-SK model
�under the conditions given in Sec. VIII�.

However, critical exponents of different universality
classes may coincide in special dimensions and do not pro-
vide final answers. Universal features can eventually be de-
scribed by probability distributions with identical functional
form. The numerical distributions given in Secs. VII and
VIII should thus be studied further by analytical models. In
pioneering work, Garel et al. studied energy distribution
functions to scrutinize similarities and differences between
spin glasses �SK and other� and directed polymers �52–56�.
A relationship between directed polymers and the KPZ equa-
tion was described in Ref. �57�. Very remarkable is the fact
that the 1D KPZ universality class is known to be connected
with the Gaussian orthogonal ensemble �GOE� Tracy-Widom
distribution �58,59�. Not only because of this analogy, it is
important to search for a representation of the RSB-SK class
within random matrix theory �60,61�.
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